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Introduction

OCCUPATIOR, INDUSTRY, AND CLASS OF WOREER
For & person af work, assigned to public emergency work, or -nth a job (“¥es” in
CcL 1, 22, or 4), enter present occupation, industry, and class of wo:
For a person sesking work ("Yo:" in Cal. 23): (a) If he has previous mk uzpaﬂunee. enter
last occupation, industry, an of worker; or (bLil ho does not have previous work
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experience, eater “*New worker” anal 28 and leave Cols. 26 and 30 blank,
OCCUPATION INDUSTRY >
Tru!e. vrnhsuion. or particu- | Industry or business, as— -
R e cotton mill E CODE
lalc-mun ;cta:'l grocery LS eaTo blank)
rivet heater shipyard 3
music teacher f ic echool 5]
o] [e]e] [e]e] [e]e]

proprietors
clerical employees
skilled workers

4 laborers

w N =

Bureau of the US Census,
1897 (above) and 1940 (left)
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OCCUPATION INDUSTRY 3 4 1ab
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e A central unit for understanding labor market inequalities
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OCCUPATIOR, INDUSTRY, AND CLASS OF WOREER

erson af work, assigned to public emergency work, or mth a Job (“¥es” in

Cal 1, 22, or 24), enter present occupation, industry, al

For a person sesking work (*Yes" in Col. 23): (a) If he has previous wazk czpzrluneo. enter

last occupation, industry, and class of worker; or (hL
experience, enter ““New worker” in Col. 25, and leave Col

nd class of w

29 and 80 blank,

if ho does not have previous work

OCCUPATION

Tnda vrnlesdon or
lar kind of work, "_vt-'hm
frame spinner
salesman

rivet heater
music teacher

INDUSTRY
Industry or business, as—
cotton mill
;eta:l grocery

ahlopard
publis echool

Class of worker

CODE
(Leave blank)

proprietors
clerical employees
skilled workers

4 laborers

w N =

Bureau of the US Census,
1897 (above) and 1940 (left)

e A central unit for understanding labor market inequalities

e Why are occupations so important?
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OCCUPATIOR, INDUSTRY, AND CLASS OF WOREER
erson af work, assigned to public emergency work, or -mh a job (“¥es” in
Col 1, 22, or 24}, enier present occupation, industry, and class of w
Fer a person sesking work (*Yes" in Col. 23): (a) If he has previous wezk ezperlenen. enter
last occupation, industry, and class of worker; of (b) if ho does not have previous work
experience, enter “New worker" in Col. 28, and leave Cols. 26 and 30 blank.

OCCUPATION
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e pd ot warka
frame spinner
salesman

rivet heater
music teacher

INDUSTRY

Industry or business, as—

cotton mill
retail grocery

Ainyard
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Class of worker

CODE
(Leave blank)

proprietors
clerical employees
skilled workers

4 laborers

w N =

Bureau of the US Census,
1897 (above) and 1940 (left)

e A central unit for understanding labor market inequalities

e Why are occupations so important?

—  the nature of skills and tasks performed at work
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OCCUPATIOR, INDUSTRY, AND CLASS OF WOREER

exzon at work, assigned to publie emerdency work, oz arith a job (*Yes" in

31, 22, or 24), enter present ocoupation, indusiry, and class of w

Fu l namn seeking work (*Yes" in Col. 23): (a) If he has previsus wazk czpzrlenen enter
last occu,pahon. industry, and class of worker; or (hf‘ﬂ ho does not have previous work
experience, enter “New warker" in Col. 25, and leave Co! lank,

29 and 80 bl

OCCUPATION

Trade, profession, or
h:rne 3, or particu-

d of work, as—

{u me spinner
salesman

rivet heater
music teacher

INDUSTRY
Industry or busincss, as—
cotton mill
;ata:’l grocery

ahlopard
publis echool

Class of worker

1 proprietors
2 clerical employees
3 skilled workers
4 laborers
CODE
(ooTwy Bureau of the US Census,
1897 (above) and 1940 (left)

e A central unit for understanding labor market inequalities

e Why are occupations so important?
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—  the nature of skills and tasks performed at work

— occupations are coherent bundles of skills (Acemoglu and Autor,
2011; Mouw and Kalleberg, 2010)
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Research question

Questioned by empirical evidence:

- heterogeneity in task content (Yamaguchi, 2012; Autor and
Handel, 2013; Freeman et al., 2020)
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Research question

Questioned by empirical evidence:
- heterogeneity in task content (Yamaguchi, 2012; Autor and
Handel, 2013; Freeman et al., 2020)
- significant overlap in workers’ skill portfolios (Poletaev and

Robinson, 2008; Gathmann and Schonberg, 2010; Cheng and Park,
2020)

Introduction
oe o] [e]e] [e]e] [e]e] [e]e] 000000 o]



Research question

Questioned by empirical evidence:
- heterogeneity in task content (Yamaguchi, 2012; Autor and
Handel, 2013; Freeman et al., 2020)
- significant overlap in workers’ skill portfolios (Poletaev and

Robinson, 2008; Gathmann and Schénberg, 2010; Cheng and Park,
2020)

Are occupations made up of well-defined and homogeneous
“bundles of skills"?
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Research question

Questioned by empirical evidence:
- heterogeneity in task content (Yamaguchi, 2012; Autor and
Handel, 2013; Freeman et al., 2020)

- significant overlap in workers’ skill portfolios (Poletaev and
Robinson, 2008; Gathmann and Schénberg, 2010; Cheng and Park,
2020)

Are occupations made up of well-defined and homogeneous
“bundles of skills"?

Case: the UK
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Theory

From skills to skill profiles

Skills are often poorly conceptualized (Liu and Grusky, 2013)

e Skills are analyzed in isolation
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Skills are often poorly conceptualized (Liu and Grusky, 2013)
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—> context matters

— skill profiles: mixes of (different types of) hard and soft
skills
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Theory

From skills to skill profiles

Skills are often poorly conceptualized (Liu and Grusky, 2013)

e Skills are analyzed in isolation
—> context matters

— skill profiles: mixes of (different types of) hard and soft
skills

— Are occupations made of similar skill profiles?

Theory
[ ]

[e]e] [e]e] [e]e] [e]e] [e]e] 000000 o]



Data
Skills defined by employers at the job level
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Data
Skills defined by employers at the job level

Online job ads gathered by the BGT in the UK:

Observation period 2019 calendar year
Full sample 6.9 million

Random Sample 600,000
(stratified by 2-digit occupation)

0:‘ burning “ Lightcast

Data
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Occupation classification

Standard Occupational Classification 2010 (UK)

9 Major groups

25 Sub-Major groups
9

!
!
l 92

90 Minor groups 921
9211

369 Unit groups

Data
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Example: postal workers

ELEMENTARY OCCUPATIONS
ELEMENTARY ADMINISTRATION
AND SERVICE

ELEMENTARY ADMINISTRATION
POSTAL WORKERS, MAIL SORTERS
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Operationalisation

How to identify the skill profiles of occupations?

Job ads are already pre-processed by the BGT: extracts skills
requirements and standardizes their labels

® 9,065 distinct skill requirements

® How to measure their association within the ads?

Method |
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Operationalisation

How to identify the skill profiles of occupations?

Job ads are already pre-processed by the BGT: extracts skills
requirements and standardizes their labels

® 9,065 distinct skill requirements

® How to measure their association within the ads?
W topic modeling with LDA

Method |
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Method

Method: LDA Biterm topic model (Yan et al., 2013)
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Method

Method: LDA Biterm topic model (Yan et al., 2013)
K=19 topics

Method |
[e]e] o] [e]e] oe [e]e] [e]e]

000000



Method

Method: LDA Biterm topic model (Yan et al., 2013)
K=19 topics

LDA outputs

topici = (Pskilly » --+-Pskilly ), Yi=1,...K

topic = latent skill category
<3 data-driven classification of skills

Job; = (ptopic17 ""ptOpiCk)a Vj=1,..J
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Method

Method: LDA Biterm topic model (Yan et al., 2013)
K=19 topics

LDA outputs

topic; = (Pskilly » -+--Pskilly ) Vi=1,...K

topic = latent skill category
<3 data-driven classification of skills

jObj = (ptopic17 ""ptOpiCk)a vj=1,...J

— skill profiles of job postings

Method |
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Results Biterm

19 latent topics or skill categories
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Results Biterm

19 latent topics or skill categories

[e]e]

Skill category

Digital Marketing &

content strategy

[e]e]

Skills, in decreasing order of probability

social  media; marketing; digital ~ marketing;
creativity; marketing management; Google Analyt-
ics; market strategy; content management; copy
writing; editing...
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Results Biterm

19 latent topics or skill categories

[e]e]

Skill category

Digital Marketing &
content strategy

Otbher skill categories
Project Management

Skills, in decreasing order of probability

social  media; marketing; digital  marketing;
creativity; marketing management; Google Analyt-
ics; market strategy; content management; copy
writing; editing...

Engineering & Technical Expertise

Office administration & management Manufacturing & Engineering
Sales & Business Development Data Management & Analysis
Communication & Interpersonal Abilities Facility Maintenance
Caregiving & Support Services Healthcare & Patient Care
Customer Service & Retail Operations Business stragegy

Financial operations

Technical Support & Troubleshooting

Web Development & Software Engineering  Graphic Design & Creative Media
Logistics & Supply Chain Management Scientific Research & Laboratory Work

Results |
[e]e] [ Jo} [e]e] 000000 o]



Results Biterm
Job postings as skill profiles

& Social Media Account Executive
Time Management, Content Management, Creative Writing, Social
Media, Creativity, Business-to-Business, Social Media Platforms.
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Results Biterm
Job postings as skill profiles

& Social Media Account Executive
Time Management, Content Management, Creative Writing, Social
Media, Creativity, Business-to-Business, Social Media Platforms.

Skill category Probability
Digital Marketing and Content Strategy 0.75
Graphic Design and Creative Media  0.08
Communication and Interpersonal Abilities 0.07
Other skill categories <0.05

Results |
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Similarity of skill profiles between occupations
The topic space with three topics

.
%o

se o *

. .

Documents mainly focus on one
topic
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Similarity of skill profiles between occupations

The topic space with three topics

%o
se o *
. .

Documents mainly focus on one
topic

[e]e] o] [e]e] [e]e]

Documents mainly focus on two
topics
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Similarity of skill profiles between occupations

Empirical distributions with three topics

Documents mainly focus on one
topic Documents mainly focus on two
topics

Method I
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MMD distance between occupations
SOC Major groups

Introduction Theory Data Method | Results |
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MMD distance between occupations
SOC Sub-Major groups (theoretical)

- 1.2

- 10

- 08

- 04

- 0.2

Introduction Theory Data Method | Results | Method |1 Results Il Conclusion
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MMD distance between occupations
SOC Sub-Major groups (observed)

- 07
- 06

- 05

- 03
- 02

- 0.1

Introduction Theory Data Method | Results | Method |1 Results Il Conclusion
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MMD distance between occupations
SOC Minor groups (theoretical)

35
3.0
25

- 20

0.5

Introduction Theory Data Method | Results | Method Il Results Il Conclusion
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MMD distance between occupations
SOC Minor groups (observed)
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- 04
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Introduction Theory Data Method | Results | Method |1 Results Il Conclusion
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Wage analysis

Do the skill profiles capture substantive differences in job content?

Results 11
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Wage analysis
Do the skill profiles capture substantive differences in job content?

Minimum hourly wage

Regression R-squared

Major groups Sub-major groups Minor groups Unit groups
SOC variable

SOC variable alone
mmm  SOC variable and topic loads

Results |1
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Wage analysis
Do the skill profiles capture substantive differences in job content?

Minimum hourly wage

4
03
02
0.1
0.0

Major groups Sub-major groups Minor groups Unit groups

o

Regression R-squared

SOC variable

SOC variable alone
mmm  SOC variable and topic loads

w» QOccupation and skill profile are complementary.

Results I1
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Conclusion

@ Occupations are not good proxy for job skill content (Freeman
et al., 2020; Poletaev and Robinson, 2008)

® Proximity of skill profiles: more room for mobility than usually
assumed? (DeMaria et al., 2020)

© Occupations and skill profiles bring complementary information

Conclusion
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Conclusion

@ Occupations are not good proxy for job skill content (Freeman
et al., 2020; Poletaev and Robinson, 2008)

® Proximity of skill profiles: more room for mobility than usually
assumed? (DeMaria et al., 2020)

© Occupations and skill profiles bring complementary information

P What's in an occupation? 44

Conclusion
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Discussion

Want to know more?

career

projectcareer.eu
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Data

Representativity

== Employed (ONS NOMIS 2019)
30 == Job ads (BGT 2019)

25

N
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Percentage (%)
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Theory

An unquestioned assumption about the nature of occupations

“Task models provide a natural framework for interpreting
patterns related to occupations in the labor market, (...)
since we can think of occupations as bundles of tasks.”
(p.1118) (Acemoglu and Autor, 2011)

“First, occupations vary in their skill, that is, the degree
of complexity of occupational activities and the amount
of training time required to perform them adequately.”
(p.404) (Mouw and Kalleberg, 2010)

Appendix
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How to map the skill structure of the labour market?

Prevalence of top-down approaches
Exceptions Alabdulkareem et al. (2018); Djumalieva and Sleeman (2018) :
Identification of communities of similar skills

[+ o Cognitiveskill e e Physical skill |

Innovation

Construction

Time
management

Manual
dexterity

Peripheral
Interpersonal vision
relationships Stamina
Complex problem

solving

Alabdulkareem et al. (2018)
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How to map the skill structure of the labour market?

Prevalence of top-down approaches
Exceptions Alabdulkareem et al. (2018); Djumalieva and Sleeman (2018) :
Identification of communities of similar skills

[+ o Cognitiveskill e e Physical skill |

° Innovation

* % 2 o 3"
,//’ 0

° Construction
°

Time
management

Manual
dexterity

Peripheral
Interpersonal vision
relationships Stamina
Complex problem

solving

Alabdulkareem et al. (2018)

X one skill belongs to one and only one category

X it does not capture patterns of complementarity
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Biterm Topic model (BTM)

A variant of Latent Dirichlet Allocation (LDA)

Job ads are short texts: data sparsity and lack of context

The biterm topic model (Yan et al., 2013)
® BTM uses biterms instead of words as semantic units

“planning sales”

“planning sales Excel’=< “sales Excel”

“Excel planning”

Biterm
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Biterm Topic model (BTM)

A variant of Latent Dirichlet Allocation (LDA)

Job ads are short texts: data sparsity and lack of context

The biterm topic model (Yan et al., 2013)
® BTM uses biterms instead of words as semantic units

“planning sales”

“planning sales Excel’=< “sales Excel”
“Excel planning”
e |t directly models the generation of words co-occurrence patterns in
the whole corpus (# in each single document)

® The document generative process can be estimated

Biterm
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Biterm topic model
From Yan et al. (2013)

Biterm: unordered word-pair co-occurrence in a short context

Generative process

® The corpus consists of a mixture of topics

® Each biterm is drawn from a specific topic

@ For each topic z, draw a topic-specific word distribution
¢, Dir(B3)
® Draw a topic distribution 8 «~» Dir(«) for the whole collection
© For each biterm b in the biterm set B
— draw a topic assignment z «~ Multi(6)

- draw two words: w;, wj «~ Multi(¢,)

Biterm
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Biterm topic model
From Yan et al. (2013)

The joint probability of a biterm b = (w;, w;):
= ZP(Z)P(WI VVJ|Z) Zez¢l\z¢1|z

The likelihood of the whole corpus:
P(B H Ze ¢I|Z¢J\z
(ij) =z

The topic proportion of a document can be estimated via Bayes and the
empirical distribution of the generated biterms:

P(2)P(wilz)P(wj|z) _ nab
2. P(2)P(wil2)P(w;|2) 3, na(b)

P(z|d) = ZP z|b)P(b|d) =

Biterm
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Biterm topic model
Comparison with LDA (from Yan et al. (2013))

9

(@

K

O~Nrw W

K

Plate notation LDA

000

Bl

Plate notation Biterm

Biterm
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Setting for LDA

Biterm model with k topics

maximtrp/bitermplus (cythonized)

Priors a = = % i.e., the ads/topics are specialised

Iterations 2,000

Choice of k v Visual inspection, Perplexity X Coherence

Good compromise: k = 19 topics/skill categories

Biterm
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https://www.dropbox.com/home/CAREER/Marie/Results/Paper%201/LDA/Outputs%20for%20Wednesday%20meeting%2021?preview=btmplus8_Jan2012_2019.html

Choice of the number of topics
Coherence (Réder et al., 2015)

Number of topics vs. UMass coherence

UMass Coherence

2345678 91011121314151617181920212223242526272829303132333435363738394041424344454647 484950
Number of Topics

Biterm
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Choice of the number of topics
Perplexity

Number of topics vs. Perplexity

450

400

Perplexity
w w
8 &
3 3

N
o
S

200

150

2345678 91011121314151617181920212223242526272829303132333435363738394041424344454647484950

Biterm
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Distribution of job ads over the topics
Highest topic probability

14.0%
12.0%
10.0%
8.0%
6.0%
4.0%
2.0%

0.0%

References

Distribution of the highest topic probability (%)

0.2 0.4 0.6 0.8 1.0
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Distribution of job ads over the topics
Second highest topic probability

Distribution of the second highest topic probability (%)

20.0%
17.5%
15.0%
12.5%
10.0%
7.5%
5.0%
0.0 0.1 0.2 0.3 04 0.5
References Appendix Biterm Topics statistics KDE/MMD
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Distribution of job ads over the topics
Probability distribution

Distribution of probability per topic

Accounting Handicraft Basic IT office tools Financial management
500000 & 500000 3 F 500000
5 B 5 200000 5
z o - z o e z 0 z 0 -
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Distribution of job ads over the topics
Rank distribution

Rank distribution of topics in documents
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Type of skills within the skill sets

Share of soft and software skills
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Marginal distributions

zero included
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[llustration 2-simplex
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Similarity of skill profiles within/between occupations
Maximum mean discrepancy (MMD)

Strategy:

@ define an empirical distribution over the job ads at the
occupation level
< with the job ads defined by their 19-dimension vectors.

® compare the empirical distributions of occupations: how much
do they overlap/differ?

KDE/MMD
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Similarity of skill profiles within/between occupations
Maximum mean discrepancy (MMD)

Strategy:
@ define an empirical distribution over the job ads at the

occupation level
< with the job ads defined by their 19-dimension vectors.

® compare the empirical distributions of occupations: how much
do they overlap/differ?

Maximum mean discrepancy

Kernel-based distance between probability distributions
v/ Non-parametric
v Implementable in high dimension

v Robust
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KDE

Kernel density estimation

Image from a beautiful animation by Matthew Conlen
https://mathisonian.github.io/kde/

KDE/MMD



https://mathisonian.github.io/kde/

MMD

Maximum mean discrepancy

Technical details

— RBF gaussian kernel x(x,y) = exp(—7 || x — y |[?)

— small variance (y = meld2 = 1.49, with med the median of
pairwise distances)

~ obtained via the median heuristic (Muandet et al., 2017, 54)
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Are the closest minor groups in the same (sub-) major
group?

5 = No S0C Major neighbours
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Are the closest unit groups in the same minor group?

o8 —— No SOC Major neighbours

= No SOC Sub-Major neighbours
a7 —— Mo SOC Minor neighbours
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Occupation classification

Occupations: nine major groups of the UK Standard
Occupational Classification (SOC 2010)

1. Managers, directors and senior officials

2. Professional occupations

3. Associate professionals and technical
occupations

4. Administrative and secretarial occupations

5. Skilled trades occupations

6. Caring, leisure and other service occupations

7. Sales and customer service occupations

8. Process, plant and machine operatives

9. Elementary occupations

000 0000000 0000000 000000

SOC
°



	Introduction
	Theory
	Data
	Method I
	Results I
	Method II
	Results II
	Conclusion
	Appendix
	References
	Appendix
	Biterm
	Topics statistics
	KDE/MMD
	SOC


