Are occupations "bundles of skills"? Identifying latent skill profiles in the labour market using topic modeling

> ODISSEI Conference 2 November 2023

Marie Labussière & Thijs Bol University of Amsterdam

European Research Council



Introduction 00 heory

Meth

Results

Method | 00

od II

sults II 0000

For a person at work, assign Col. 21, 22, or 24), enter prese For a person seeking work (" last occupation, industry, experience, enter "New work		e does n	work experience, ente
OCCUPATION Trade, profession, or particu- lar kind of work, as- frame spinner salesman laborer rivet heater music teacher	INDUSTRY Industry or business, as- cotton mill retail grocory farm shipyard public school	Class of worker	CODE (Leave blank)

- 1 proprietors
- 2 clerical employees
- 3 skilled workers
- 4 laborers

Bureau of the US Census, 1897 (above) and 1940 (left)

Introduction

Theory 0 Met

Result

Method 00

d II R

ts II (

For a person at work, assign Col. 21, 22, or 24), enter prose For a person seeking work ("		ork, or w	worker.
OCCUPATION Trade, profession, or particu- lar kind of work, as- frame spinner salesman laborer rivet heater music teacher	INDUSTRY Industry or business, as- cotton mill retail grocory farm shipyard public school	Class of worker	CODE (Leave blank)

- 1 proprietors
- 2 clerical employees
- 3 skilled workers
- 4 laborers

Bureau of the US Census, 1897 (above) and 1940 (left)

• A central unit for understanding labor market inequalities

Introduction

Theory 0 a N

od I

Results I

Method I 00

II Res

I Con

For a person at work, assign Col. 21, 22, or 24), enter prese For a person seeking work ("		ork, or w	worker.
OCCUPATION Trade, profession, or particu- lar kind of work, as- frame spinner salesman laborer rivet heater music teacher	INDUSTRY Industry or business, as- cotton mill retail grocery farm shipyard public school	Class of worker	CODE (Leave blank)

- 1 proprietors
- 2 clerical employees
- 3 skilled workers
- 4 laborers

Bureau of the US Census, 1897 (above) and 1940 (left)

- A central unit for understanding labor market inequalities
- Why are occupations so important?

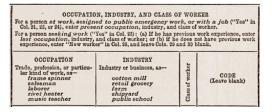
Introduction

Theory 0 a N

ethod I

Results I

Method I 00 Resu



- 1 proprietors
- 2 clerical employees
- 3 skilled workers
- 4 laborers

Bureau of the US Census, 1897 (above) and 1940 (left)

- A central unit for understanding labor market inequalities
- Why are occupations so important?
 - \rightarrow $\;$ the nature of skills and tasks performed at work

Introduction

Theory 0 a M

I R

sults I

Method II 00

I Resu

For a person at work, assign Col. 21, 22, or 24), enter prese		ork, or w	with a job ("Yes" in worker.
For a person seeking work (" last occupation, industry, experience, enter "New work OCCUPATION	I con tool: 25): (a) if he has j and class of worker; or (b) if h er" in Col. 25, and leave Cols. 29 INDUSTRY	and 30 bl	ank.
Trade, profession, or particu- lar kind of work, as- frame spinner salesman laborer rivet heater music teacher	Industry or business, as- cotton mill rotail grocery farm shipyard public school	Class of worker	CODE (Leave blank)

- 1 proprietors
- 2 clerical employees
- 3 skilled workers
- 4 laborers

Bureau of the US Census, 1897 (above) and 1940 (left)

- A central unit for understanding labor market inequalities
- Why are occupations so important?
 - \rightarrow $\;$ the nature of skills and tasks performed at work
 - → occupations are coherent *bundles* of skills (Acemoglu and Autor, 2011; Mouw and Kalleberg, 2010)

Introduction

Theory 0 Meth 00 Results

Method 00 II Resi

II Con

Questioned by empirical evidence:

- heterogeneity in task content (Yamaguchi, 2012; Autor and Handel, 2013; Freeman et al., 2020)

Introduction

Theory 0 Met

Resu

Metho 00 II Re

ts II 0 00 0

Questioned by empirical evidence:

- heterogeneity in task content (Yamaguchi, 2012; Autor and Handel, 2013; Freeman et al., 2020)
- significant overlap in workers' skill portfolios (Poletaev and Robinson, 2008; Gathmann and Schönberg, 2010; Cheng and Park, 2020)

Introduction

Theory 0 a M

Re

Meth oo

od II

sults II 0000

Questioned by empirical evidence:

- heterogeneity in task content (Yamaguchi, 2012; Autor and Handel, 2013; Freeman et al., 2020)
- significant overlap in workers' skill portfolios (Poletaev and Robinson, 2008; Gathmann and Schönberg, 2010; Cheng and Park, 2020)

Are occupations made up of well-defined and homogeneous "bundles of skills"?

Introduction

Theory 0 Met 00 Result

Metho 00

od II

sults II 0000

Questioned by empirical evidence:

- heterogeneity in task content (Yamaguchi, 2012; Autor and Handel, 2013; Freeman et al., 2020)
- significant overlap in workers' skill portfolios (Poletaev and Robinson, 2008; Gathmann and Schönberg, 2010; Cheng and Park, 2020)

Are occupations made up of well-defined and homogeneous "bundles of skills"?

Case: the UK

Introduction

Theory O Meth oo Results

Metho 00

od II

ults II

• Skills are analyzed in isolation

Introduction 00 Theory • a N

Me

Method II 00

II Re

lts II 000

- Skills are analyzed in isolation
 - \rightarrow context matters

Introduction 00 Theory • ta

Method I

Results

Method 00

III Re

ts II

- Skills are analyzed in isolation
 - \rightarrow context matters

 \rightarrow skill profiles: mixes of (different types of) hard and soft skills

Introduction 00 Theory • ta N

I R

Metho 00

od II 🛛

sults II 0000

- Skills are analyzed in isolation
 - \rightarrow context matters

 \rightarrow skill profiles: mixes of (different types of) hard and soft skills

Introduction 00 Theory • ta N

I R

Metho 00

od II 🛛

sults II 0000

- Skills are analyzed in isolation
 - \rightarrow context matters

 \rightarrow skill profiles: mixes of (different types of) hard and soft skills

→ Are occupations made of similar *skill profiles*?

Introduction 00 Theory

Met 00 Result

Method 00

d II F

sults II 0000

Data

Skills defined by employers at the job level

Introduction 00 Theory 0 Data ●0 Method 00 Results I 00 Method II 00

d II F

Results II 000000

Data

Skills defined by employers at the job level

Online job ads gathered by the BGT in the UK:

Observation period 2019 calendar year Full sample 6.9 million Random Sample 600,000 (stratified by 2-digit occupation)

Introduction 00 heory

Data •0 Metho

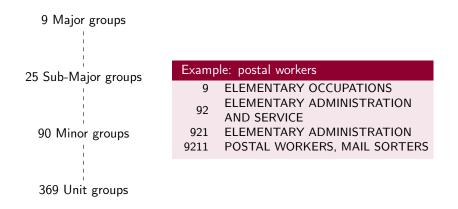
Results

Method 00

nod II

esults II 20000

Occupation classification Standard Occupational Classification 2010 (UK)



Data

0.

Operationalisation

How to identify the skill profiles of occupations?

Job ads are already pre-processed by the BGT: extracts skills requirements and standardizes their labels

- 9,065 distinct skill requirements
- How to measure their association within the ads?

Introduction Theory Data Method I Results I Method II Results II 00 0 00 00 00 00 00 000000

Operationalisation

How to identify the skill profiles of occupations?

Job ads are already pre-processed by the BGT: extracts skills requirements and standardizes their labels

- 9,065 distinct skill requirements
- How to measure their association within the ads?

topic modeling with LDA

Introduction 00 heory

Method I ●○ Results

Method 00 I Resi

Conclusio o

Method: LDA Biterm topic model (Yan et al., 2013)

Introduction 00 Theory 0 Data 00 Method I ○● Results I

Metho

ethod II

l Resi

Conc

Method: LDA Biterm topic model (Yan et al., 2013) K=19 topics

Introduction 00 Theory 0 Data oo Method I

Results I

Method II 00

iod II

Results II

Method: LDA Biterm topic model (Yan et al., 2013) K=19 topics

LDA outputs

$$\mathsf{topic}_{\mathsf{i}} = (\mathsf{p}_{\mathsf{skill}_1}, ..., \mathsf{p}_{\mathsf{skill}_N}), \, \forall \mathsf{i} = \mathsf{1}, ... \mathsf{K}$$

 $\begin{array}{l} \mbox{topic} = \mbox{latent skill category} \\ \hookrightarrow \mbox{ data-driven classification of skills} \end{array}$

$$job_j = (p_{topic_1}, ..., p_{topic_k}), \forall j=1,..., J$$

Introduction Theory Data 00 0 00

Method I

Results

Method 00 II Res

II Co 0 0

Conclusion Conclusion

Method: LDA Biterm topic model (Yan et al., 2013) K=19 topics

LDA outputs

$$\mathsf{topic}_i = (\mathsf{p}_{\mathsf{skill}_1}, ..., \mathsf{p}_{\mathsf{skill}_N}), \, \forall i = 1, ... \kappa$$

 $\begin{array}{l} \mbox{topic} = \mbox{latent skill category} \\ \hookrightarrow \mbox{ data-driven classification of skills} \end{array}$

$$job_j = (p_{topic_1}, \dots, p_{topic_k}), \forall j=1, \dots, J$$

 \hookrightarrow skill profiles of job postings

Introduction 00 Theory 0 Method I

Resu

Metho 00

hod II

esults II

Results Biterm

19 latent topics or skill categories

Theory

Results I •0

Method II

0

Results Biterm

19 latent topics or skill categories

Skill category

Digital Marketing & content strategy

Skills, in decreasing order of probability

social media; marketing; digital marketing; creativity; marketing management; Google Analytics; market strategy; content management; copy writing; editing...

Introduction 00 Theory 0 ata O Method I

Results I

Metho oo

ethod II

Result

Results Biterm

19 latent topics or skill categories

Skill category

Digital Marketing & content strategy

Skills, in decreasing order of probability

social media; marketing; digital marketing; creativity; marketing management; Google Analytics; market strategy; content management; copy writing; editing...

Other skill categories

Project Management Office administration & management Sales & Business Development Communication & Interpersonal Abilities Caregiving & Support Services Customer Service & Retail Operations Financial operations Web Development & Software Engineering Logistics & Supply Chain Management Engineering & Technical Expertise Manufacturing & Engineering Data Management & Analysis Facility Maintenance Healthcare & Patient Care Business stragegy Technical Support & Troubleshooting Graphic Design & Creative Media Scientific Research & Laboratory Work

Introduction

Theory C Data

Method

Results I

Method 00

thod II

sults II 0000

Results Biterm Job postings as skill profiles

Social Media Account Executive

Time Management, Content Management, Creative Writing, Social Media, Creativity, Business-to-Business, Social Media Platforms.

Introduction 00 Theory 0 Me

I Res

Results I

Method I 00

d II F

ts II

Results Biterm Job postings as skill profiles

Social Media Account Executive

Time Management, Content Management, Creative Writing, Social Media, Creativity, Business-to-Business, Social Media Platforms.

Skill category	Probability
Digital Marketing and Content Strategy	0.75
Graphic Design and Creative Media	0.08
Communication and Interpersonal Abilities	0.07
Other skill categories	<0.05

0.

Results I

Similarity of skill profiles between occupations The topic space with three topics

Documents mainly focus on one topic

.0

Method II

Similarity of skill profiles between occupations The topic space with three topics

Documents mainly focus on one topic



Documents mainly focus on two topics

Introduction 00 Theory 0 Metho

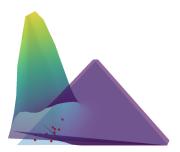
Results

Method II

II bo

lts II 000

Similarity of skill profiles between occupations Empirical distributions with three topics

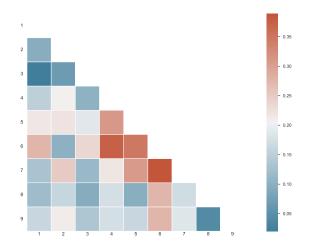


Documents mainly focus on one topic

Documents mainly focus on two topics

Method II 00

MMD distance between occupations SOC Major groups



ntroduction

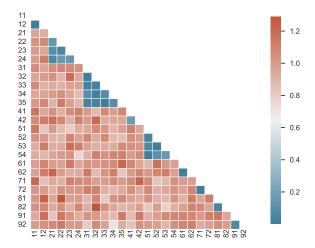
heory

Metho 00 Results I 00

Metho 00 II Results II

I Concl

MMD distance between occupations SOC Sub-Major groups (theoretical)



Introduction 00

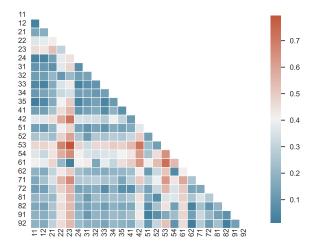
Theory 0 a M

od I

Results | 00 Method 00 Resu

Results II

MMD distance between occupations SOC Sub-Major groups (observed)



Introduction 00

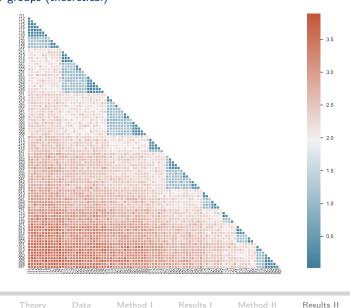
Theory 0 ata

Method I oo Results 00 Method 00

II Re

Results II

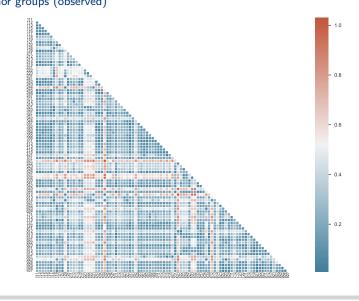
MMD distance between occupations SOC Minor groups (theoretical)



Results II Co

O

MMD distance between occupations SOC Minor groups (observed)



Introduction

eory

Me

Resul 00 Metho 00

od II F

Results II 0000●0

Conclusion 0

Wage analysis

Do the skill profiles capture substantive differences in job content?

Introduction 00 Theory 0 Data 00 Method 00 Results I 00 Method 00

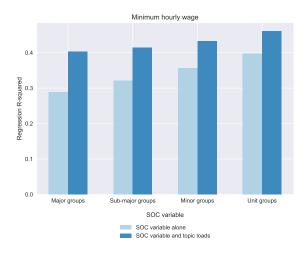
d II F

Results II

Conclusior 0

Wage analysis

Do the skill profiles capture substantive differences in job content?



troduction T

ory

Meth 00 Results

Method 00

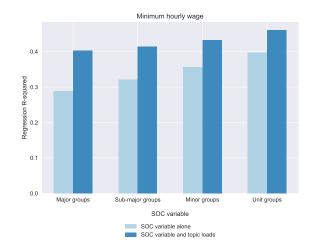
II Re

Results II

Conclusion 0

Wage analysis

Do the skill profiles capture substantive differences in job content?



Occupation and skill profile are complementary.

Introduction

eory

Me

l F

ults I

Method II 00

Results II

II Ca ● 0

Lonclusion

Conclusion

- Occupations are not good proxy for job skill content (Freeman et al., 2020; Poletaev and Robinson, 2008)
- Proximity of skill profiles: more room for mobility than usually assumed? (DeMaria et al., 2020)
- **3** Occupations and skill profiles bring complementary information

Conclusion

Introduction Theory Data Method I Results I Method II Results II oo oo oo oo oo oo oo oo

Conclusion

- Occupations are not good proxy for job skill content (Freeman et al., 2020; Poletaev and Robinson, 2008)
- Proximity of skill profiles: more room for mobility than usually assumed? (DeMaria et al., 2020)
- **3** Occupations and skill profiles bring complementary information

▶ What's in an occupation? ₩

Introduction 00 heory

Met 00 Result

Metho 00

d II F

lts II (

Conclusion

Discussion Want to know more?

projectcareer.eu

@CAREER_erc

References

Appendix 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD 000000

References I

- Acemoglu, D. and Autor, D. (2011). Skills, Tasks and Technologies: Implications for Employment and Earnings. In *Handbook of Labor Economics*, volume 4, pages 1043–1171. Elsevier.
- Alabdulkareem, A., Frank, M. R., Sun, L., AlShebli, B., Hidalgo, C., and Rahwan, I. (2018). Unpacking the polarization of workplace skills. *Science Advances*, 4(7):eaao6030.
- Autor, D. H. and Handel, M. J. (2013). Putting Tasks to the Test: Human Capital, Job Tasks, and Wages. Journal of Labor Economics, 31(S1):S59–S96.
- Cheng, S. and Park, B. (2020). Flows and Boundaries: A Network Approach to Studying Occupational Mobility in the Labor Market. American Journal of Sociology, 126(3):577–631.
- DeMaria, K., Fee, K., and Wardrip, K. (2020). Exploring A Skills-Based Approach To Occupational Mobility. Community Affairs Discussion Paper 89004, Federal Reserve Bank of Philadelphia.
- Djumalieva, J. and Sleeman, C. (2018). An Open and Data-driven Taxonomy of Skills Extracted from Online Job Adverts. In Larsen, C., Rand, S., Schmid, A., and Dean, A., editors, *Developing Skills in* a Changing World of Work, pages 425–454. Rainer Hampp Verlag.
- Freeman, R. B., Ganguli, I., and Handel, M. J. (2020). Within-Occupation Changes Dominate Changes in What Workers Do: A Shift-Share Decomposition, 2005–2015. AEA Papers and Proceedings, 110:394–399.
- Gathmann, C. and Schönberg, U. (2010). How General Is Human Capital? A Task-Based Approach. Journal of Labor Economics, 28(1):1-49.
- Liu, Y. and Grusky, D. B. (2013). The Payoff to Skill in the Third Industrial Revolution. American Journal of Sociology, 118(5):1330–1374.
- Mouw, T. and Kalleberg, A. L. (2010). Occupations and the Structure of Wage Inequality in the United States, 1980s to 2000s. American Sociological Review, 75(3):402–431.
- Muandet, K., Fukumizu, K., Sriperumbudur, B., and Schölkopf, B. (2017). Kernel Mean Embedding of Distributions: A Review and Beyond. Foundations and Trends® in Machine Learning, 10(1-2):1-141.

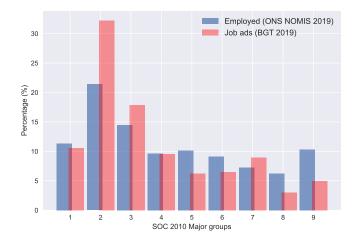
References II

- Poletaev, M. and Robinson, C. (2008). Human Capital Specificity: Evidence from the Dictionary of Occupational Titles and Displaced Worker Surveys, 1984–2000. *Journal of Labor Economics*, 26(3):387-420.
- Röder, M., Both, A., and Hinneburg, A. (2015). Exploring the Space of Topic Coherence Measures. In Proceedings of the Eighth ACM International Conference on Web Search and Data Mining, pages 399–408, Shanghai China. ACM.
- Yamaguchi, S. (2012). Tasks and Heterogeneous Human Capital. Journal of Labor Economics, 30(1):1–53.
- Yan, X., Guo, J., Lan, Y., and Cheng, X. (2013). A biterm topic model for short texts. In Proceedings of the 22nd international conference on World Wide Web - WWW '13, pages 1445–1456, Rio de Janeiro, Brazil. ACM Press.

References

Appendix 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD 000000

Data Representativity



References

Appendix

Biterm 0000000 Topics statistics 0000000 KDE/MMD

SOC o Theory

An unquestioned assumption about the nature of occupations

"Task models provide a natural framework for interpreting patterns related to occupations in the labor market, (...) since **we can think of occupations as bundles of tasks**." (p.1118) (Acemoglu and Autor, 2011)

"First, occupations vary in their skill, that is, the degree of complexity of occupational activities and the **amount** of training time required to perform them adequately." (p.404) (Mouw and Kalleberg, 2010)

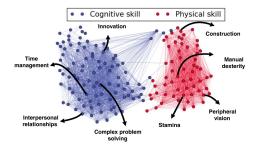
References

Appendix 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD

How to map the skill structure of the labour market?

Prevalence of top-down approaches

Exceptions Alabdulkareem et al. (2018); Djumalieva and Sleeman (2018) : Identification of communities of *similar* skills



Alabdulkareem et al. (2018)

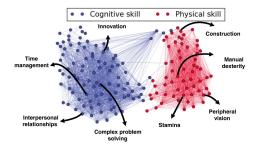
References

Appendix 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD 000000

How to map the skill structure of the labour market?

Prevalence of top-down approaches

Exceptions Alabdulkareem et al. (2018); Djumalieva and Sleeman (2018) : Identification of communities of *similar* skills



Alabdulkareem et al. (2018)

- \boldsymbol{x} one skill belongs to one and only one category
- X it does not capture patterns of complementarity

References

Appendix

Biterm 0000000 Topics statistics 0000000 KDE/MMD 000000

Biterm Topic model (BTM) A variant of Latent Dirichlet Allocation (LDA)

Job ads are short texts: data sparsity and lack of context

The biterm topic model (Yan et al., 2013)

• BTM uses biterms instead of words as semantic units

```
"planning sales Excel"=

{"planning sales"

"sales Excel"

"Excel planning"
```

References

Appendi>

Biterm •000000 Topics statistics 0000000 KDE/MMD

SOC o

Biterm Topic model (BTM) A variant of Latent Dirichlet Allocation (LDA)

Job ads are short texts: data sparsity and lack of context

The biterm topic model (Yan et al., 2013)

• BTM uses biterms instead of words as semantic units

```
"planning sales Excel"=

{"planning sales"

"sales Excel"

"Excel planning"
```

- It directly models the generation of words co-occurrence patterns in the whole corpus (\neq in each single document)
- The document generative process can be estimated

References

Appendi: 000 Biterm •000000 Topics statistics 0000000 KDE/MMD

Biterm topic model From Yan et al. (2013)

Biterm: unordered word-pair co-occurrence in a short context

Generative process

- The corpus consists of a mixture of topics
- Each biterm is drawn from a specific topic
- For each topic z, draw a topic-specific word distribution $\phi_z \sim Dir(\beta)$
- **2** Draw a topic distribution $\theta \sim Dir(\alpha)$ for the whole collection
- **3** For each biterm b in the biterm set B
 - draw a topic assignment $z \backsim Multi(\theta)$
 - draw two words: $w_i, w_j \sim Multi(\phi_z)$

References

Appendi>

Biterm 0000000

Biterm topic model From Yan et al. (2013)

The joint probability of a biterm $b = (w_i, w_j)$:

$$P(b) = \sum_{z} P(z)P(w_i|z)P(w_j|z) = \sum_{z} \theta_z \phi_{i|z} \phi_{j|z}$$

The likelihood of the whole corpus:

$$P(B) = \prod_{(i,j)} \sum_{z} \theta_{z} \phi_{i|z} \phi_{j|z}$$

The topic proportion of a document can be estimated via Bayes and the empirical distribution of the generated biterms:

$$P(z|d) = \sum_{b} P(z|b)P(b|d) = \frac{P(z)P(w_i|z)P(w_j|z)}{\sum_{z} P(z)P(w_i|z)P(w_j|z)} \frac{n_d b}{\sum_{b} n_d(b)}$$

References

Appendia 000 Biterm 0000000 Topics statistics

KDE/MMD

soc

Biterm topic model Comparison with LDA (from Yan et al. (2013))

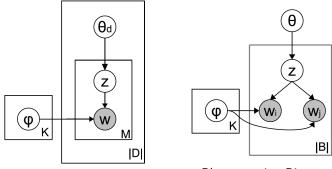


Plate notation LDA

Plate notation Biterm

References

Appendix 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD 000000

Setting for LDA Biterm model with *k* topics

maximtrp/bitermplus (cythonized)

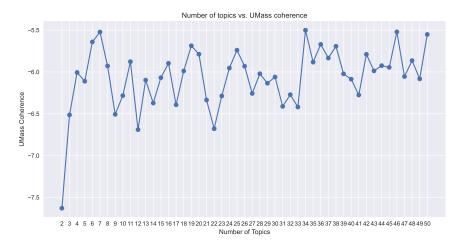
Priors $\alpha = \beta = \frac{1}{k}$ i.e., the ads/topics are specialised Iterations 2,000 Choice of $k \checkmark$ Visual inspection, Perplexity X Coherence

Good compromise: k = 19 topics/skill categories

References

Appendia 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD

Choice of the number of topics Coherence (Röder et al., 2015)



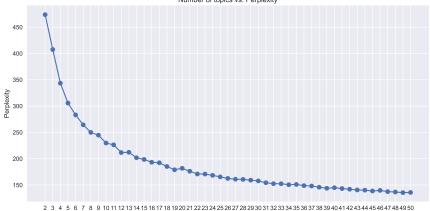
▲ Back

Appendix

Biterm 0000000 Topics statistics

KDE/MMD

Choice of the number of topics Perplexity



Number of topics vs. Perplexity

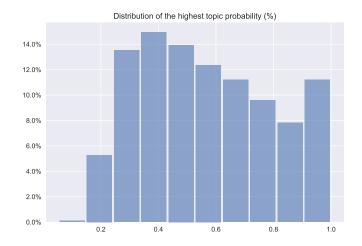
▲ Back

References

Appendia 000

Biterm 0000000 Topics statistics 0000000 KDE/MMD

Distribution of job ads over the topics Highest topic probability



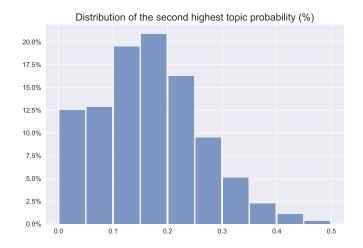
I Back

References

Appendia 000 Biterm 0000000 Topics statistics

KDE/MMD 000000 SOC o

Distribution of job ads over the topics Second highest topic probability



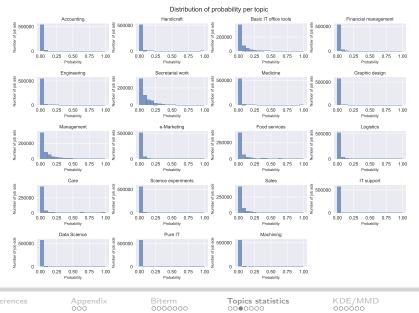
▲ Back

References

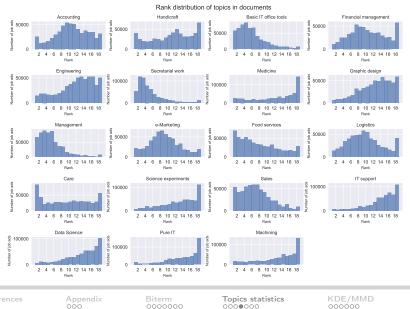
Appendix 000 Biterm 0000000 Topics statistics

KDE/MMD

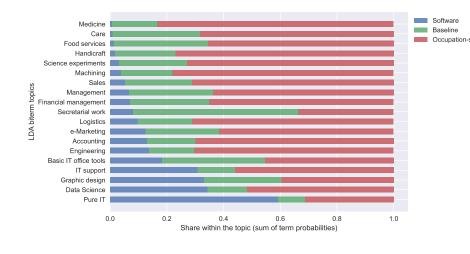
Distribution of job ads over the topics Probability distribution



Distribution of job ads over the topics ${\sf Rank\ distribution\ }$



Type of skills within the skill sets Share of soft and software skills



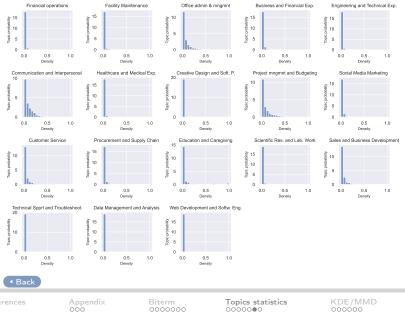
References

Appendi: 000 Biterm 0000000 Topics statistics

KDE/MMD

Marginal distributions

zero included



Marginal distributions

minimum set to 0.1

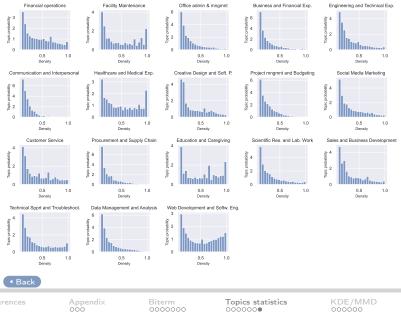
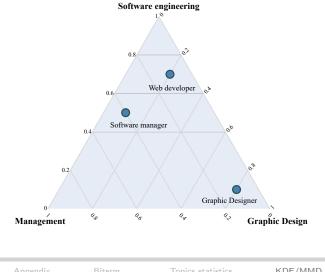


Illustration 2-simplex



References

Appendix 000

Biterm 0000000 Topics statistics 0000000 KDE/MMD •00000

Similarity of skill profiles within/between occupations Maximum mean discrepancy (MMD)

Strategy:

 define an empirical distribution over the job ads at the occupation level

 \hookrightarrow with the job ads defined by their 19-dimension vectors.

2 compare the empirical distributions of occupations: how much do they overlap/differ?

Similarity of skill profiles within/between occupations Maximum mean discrepancy (MMD)

Strategy:

define an empirical distribution over the job ads at the occupation level

 \hookrightarrow with the job ads defined by their 19-dimension vectors.

2 compare the empirical distributions of occupations: how much do they overlap/differ?

Maximum mean discrepancy

Kernel-based distance between probability distributions

- ✓ Non-parametric
- \checkmark Implementable in high dimension
- ✓ Robust

References

Appendi>

Biterm 0000000 Topics statistics 0000000 KDE/MMD

SOC o

KDE Kernel density estimation

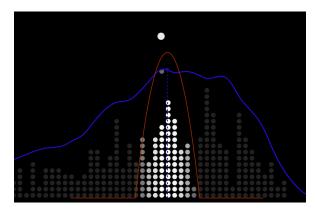


Image from a beautiful animation by Matthew Conlen https://mathisonian.github.io/kde/

References

Appendix 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD 000000 SOC o

MMD Maximum mean discrepancy

Technical details

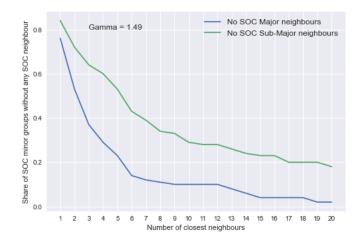
- RBF gaussian kernel $\kappa(x, y) = exp(-\gamma \mid\mid x y \mid\mid^2)$
- small variance ($\gamma = \frac{1}{med^2} = 1.49$, with *med* the median of pairwise distances)

 γ obtained via the median heuristic (Muandet et al., 2017, 54)

References

Appendia 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD

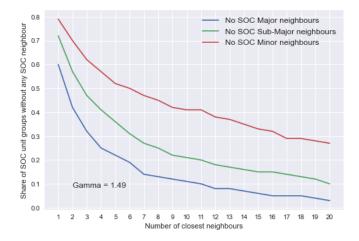
Are the closest minor groups in the same (sub-) major group?



References

Appendix 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD

Are the closest unit groups in the same minor group?



References

Appendix 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD

Occupation classification

Occupations: **nine major groups** of the UK Standard Occupational Classification (SOC 2010)

- 1. Managers, directors and senior officials
- 2. Professional occupations
- 3. Associate professionals and technical occupations
- 4. Administrative and secretarial occupations
- 5. Skilled trades occupations
- 6. Caring, leisure and other service occupations
- 7. Sales and customer service occupations
- 8. Process, plant and machine operatives
- 9. Elementary occupations

▲ Back²

References

Appendix 000 Biterm 0000000 Topics statistics 0000000 KDE/MMD 000000