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Introduction
Mapping changing labour markets

“Third industrial revolution” (Liu and Grusky, 2013) : digitalisation,
automation, robotisation, AI...

➥ How should we train and educate workers?

Main hypothesis: technological change is skill-biased
↪→ complementarity between cognitive tasks and
technological devices

Are employers looking for hybrid skill profiles combining ICT and
cognitive skills?
➥ Analyse skill profiles over time and within occupations

Case: the UK
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Theory
From skills to skill profiles

Skills are often poorly operationalised:
• Broad categories of skills, e.g. “ICT skills” (Liu and Grusky, 2013;

Buchmann et al., 2020)

• Skills are analysed in isolation (e.g., Deming, 2017; Deming and
Kahn, 2018)

̸= skill profiles

→ mixes of (different types of) hard and soft skills

→ Where does complementarity take place?
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Job ads as data

✓ A direct measure of the actual demand
for skills

✓ Employers have an interest in making
them accurate

✓ Raw skills ̸= pre-existing categories

Data
Online job ads collected by Burning Glass
Technologies (BGT)
→ Period 2012-2019
→ Random sample of 128,000 ads
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Operationalisation
How to measure complementarities?

Job ads are already pre-processed by the BGT: extracts skills
requirements and standardises their labels

• 13,435 distinct skills

• How to measure their association within the ads?

➥ topic modeling with LDA

➥ Aim to identify latent skill sets and analyse them over
time and within occupations

Introduction Theory Data Method Results Conclusion



Biterm Topic model (BTM)
A variant of Latent Dirichlet Allocation (LDA)

Job ads are short texts: data sparsity and lack of context

The biterm topic model (Yan et al., 2013)

• BTM uses biterms instead of words as semantic units

“planning sales Excel”=


“planning sales”

“sales Excel”

“Excel planning”

• It directly models the generation of words co-occurrence patterns in
the whole corpus ( ̸= in each single document)

• The document generative process can be estimated
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Setting for LDA
Biterm model with k topics

� maximtrp/bitermplus (cythonized)

Priors α = β = 1
k i.e., the ads are specialised

Iterations 2,000
Choice of k Perplexity

Umass Coherence (Röder et al., 2015)

Visual inspection

The criteria converge towards k = 8 topics

Introduction Theory Data Method Results Conclusion

https://www.dropbox.com/home/CAREER/Marie/Results/Paper%201/LDA/Outputs%20for%20Wednesday%20meeting%2021?preview=btmplus8_Jan2012_2019.html


Results Biterm: 8 skill sets

Label Top-10 most relevant words (λ = 0.8)

1 Pure IT
Javascript, Microsoft C, SQL, net, java, software
development, active server pages ASP, ASPNET,
Jquery, sql server

2 IT support
Microsoft active directory, VmWare, trouble shoot-
ing, Cisco, Windows server, Microsoft Windows,
Linux, technical support, ITIL, communication skills

3 Business & data
analytics

SQL, business analysis, project management, com-
munication skills, Oracle, stakeholder management,
business process, data analysis, problem solving,
business intelligence

4 Engineering

project management, mechanical engineering, com-
munication skills, AutoCAD, commissioning, plan-
ning, quality assurance control, quality management,
problem solving, budgeting

5 Digital marketing
creativity, social media, marketing, Adobe Pho-
toshop, communication skills, Adobe InDesign, writ-
ing, copy writing, editing, research
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Results Biterm: 8 skill sets

6 Administrative
management

communication skills, Microsoft excel, organisational
skills, budgeting, detail-orientated, planning, ac-
counting, Microsoft office, teamwork collaboration,
customer service

7 Sales

sales, communication skills, customer service, busi-
ness development, sales management, building ef-
fective relationships, sales goals, organisational skills,
teamwork collaboration, account management

8 Care

teaching, communication skills, working with pa-
tients: mental health, surgery, research, care plan-
ning, patient care, cleaning, staff management, child
care

→ omnipresence of (different types of) ICT skills

→ different mixes of ICT and soft skills

→ each job ad defined by its distribution over the 8 topics

↪→ skill profiles, over time and within occupations
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Prevalence of skill sets over time
Dichotomous skill profile

Job ad j contains topic k if Probj(k) > c
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Skill sets within occupations

Do ads in the same occupation have similar skill profiles?

➤ Clustering to analyse the diversity of skill profiles within the ads
of a given occupation

↪→ k-means for each occupation
with k determined based on the silhouette score and SSE
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Skill sets within occupations
Example with two occupations (UK SOC 2010 major groups 4 and 8)

Topic distribution of the occupation-specific cluster medoids
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Conclusion
Work in progress!

✓ Preliminary but encouraging results!

Limitations/what to do next:
☞ skill sets vs. skill profiles

☞ More explicit link with ICT/cognitive skills

↪→ analyse share of cognitive/ICT skills within each topic?

☞ The composition of topics may change over time

↪→ Dynamic biterm LDA?

☞ Combine occupation x time

↪→ Dynamic clustering?
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Discussion
Want to know more?

projectcareer.eu
� @CAREER_erc
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Data
Burning Glass Technologies (BGT)

Online job ads gathered by the BGT in the UK:

Observation period January 2012-December 2019
Full sample 59,9 million (≈5.7M/year)

Random Samples 8*16,000 ads released the months of
January only

References Appendix Data Biterm topic model Biterm Model statistics Clustering by occupations



Biterm topic model
From Yan et al. (2013)

Biterm: unordered word-pair co-occurrence in a short context

Generative process

• The corpus consists of a mixture of topics

• Each biterm is drawn from a specific topic

1 For each topic z , draw a topic-specific word distribution
ϕz ∽ Dir(β)

2 Draw a topic distribution θ ∽ Dir(α) for the whole collection

3 For each biterm b in the biterm set B

– draw a topic assignment z ∽ Multi(θ)

– draw two words: wi ,wj ∽ Multi(ϕz)
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Biterm topic model
From Yan et al. (2013)

The joint probability of a biterm b = (wi ,wj):

P(b) =
∑
z

P(z)P(wi |z)P(wj |z) =
∑
z

θzϕi|zϕj|z

The likelihood of the whole corpus:

P(B) =
∏
(i,j)

∑
z

θzϕi|zϕj|z

The topic proportion of a document can be estimated via Bayes and the
empirical distribution of the generated biterms:

P(z |d) =
∑
b

P(z |b)P(b|d) = P(z)P(wi |z)P(wj |z)∑
z P(z)P(wi |z)P(wj |z)

ndb∑
b nd(b)

References Appendix Data Biterm topic model Biterm Model statistics Clustering by occupations



Biterm topic model
Comparison with LDA (from Yan et al. (2013))

Plate notation LDA Plate notation Biterm
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Choice of the number of topics
Coherence (Röder et al., 2015)
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Choice of the number of topics
Perplexity
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Distribution of job ads over the topics
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Distribution of job ads over the topics
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Occupation classification

Occupations: nine major groups of the UK Standard
Occupational Classification (SOC 2010)

1. Managers, directors and senior officials
2. Professional occupations
3. Associate professionals and technical

occupations
4. Administrative and secretarial occupations
5. Skilled trades occupations
6. Caring, leisure and other service occupations
7. Sales and customer service occupations
8. Process, plant and machine operatives
9. Elementary occupations
Back
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Clustering by occupations
Choice of k – Silhouette width
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Clustering by occupations
Choice of k – Sum of squared errors (SSE)
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Skill sets within occupations (1/2)
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Skill sets within occupations (2/2)
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Clustering by occupations (all)
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